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Block Backward Differentiation Formulas for Solving First Order Fuzzy 
Differential Equations under Generalized Differentiability

( Formula Blok Pembezaan Kebelakang bagi Menyelesaikan Persamaan Pembezaan 
Kabur Peringkat Pertama di bawah Kebolehbezaan Umum)

ISKANDAR SHAH MOHD ZAWAWI & ZARINA BIBI IBRAHIM* 

ABSTRACT 

In this paper, the fully implicit 2-point block backward differentiation formula and diagonally implicit 2-point block 
backward differentiation formula were developed under the interpretation of generalized differentiability concept for 
solving first order fuzzy differential equations. Some fuzzy initial value problems were tested in order to demonstrate the 
performance of the developed methods. The approximated solutions for both methods were in good agreement with the 
exact solutions. The numerical results showed that the diagonally implicit method outperforms the fully implicit method 
in term of accuracy.
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ABSTRAK

Dalam kertas ini, formula 2-titik blok pembezaan kebelakang tersirat penuh dan formula 2-titik blok pembezaan 
kebelakang tersirat pepenjuru dibangunkan di bawah konsep kebolehbezaan umum bagi menyelesaikan persamaan 
pembezaan kabur peringkat pertama. Beberapa masalah-masalah nilai awal kabur diuji untuk menunjukkan prestasi 
kaedah yang dibangunkan. Penyelesaian yang dianggarkan bagi kedua-dua kaedah adalah dalam persetujuan yang 
baik dengan penyelesaian tepat. Keputusan berangka menunjukkan kaedah tersirat pepenjuru mengatasi kaedah tersirat 
penuh dalam terma kejituan.

Kata kunci: Blok; kabur; pepenjuru; tersirat

INTRODUCTION

Differential equations with uncertainty plays serve as 
mathematical models in many fields such as science, 
physics, economics, psychology, defense and demography. 
This type of differential equations is called fuzzy 
differential equations (FDEs). 
 There are different approaches to deal with FDEs. The 
first and most popular approach is using H-derivative or 
its generalization, the Hukuhara differentiability which 
is introduced by Puri and Ralescu (1983). However this 
approach suffers certain disadvantage that it leads to 
solutions with increasing support since the diameter of the 
solution is unbounded as time increases (Chalco-Cano & 
Roman-Flores 2008). In this direction, Bede and Gal (2005) 
introduced the generalized differentiability in order to 
resolve the above mentioned by enlarging the class of fuzzy 
valued function. In addition, Bede et al. (2007) stated that 
under certain appropriate conditions, FDEs is equivalent 
to a system of ordinary differential equations (ODEs) 
which can be solved by any suitable numerical method. 
The development of numerical methods for solving FDEs 
has been presented by many researchers (Abbasbandi 
& Allahviranloo 2002; Ahmad & Hasan 2007; Balooch 
Shahryari & Salahshour 2012; Shokri 2007).

 This paper was organized as follows: In the next section, 
several definitions were presented. Next, the general form 
of FDEs was described. After that, we develop the fully 
implicit 2-point block backward differentiation formulas 
(FI2BBDF) and diagonally implicit 2-point block backward 
differentiation formulas (DI2BBDF) in fuzzy version under 
the interpretation of generalized differentiability concept. 
Subsequently, several fuzzy initial value problems (FIVPs) 
were solved and the results were analyzed. Finally, the 
numerical results were discussed and some conclusion.

PRELIMINARIES

The basic definitions of fuzzy numbers were given by 
Ghazanfari and Shakerami (2011)

Definition 2.1.  A fuzzy number was a fuzzy set    which satisfies: 

y as upper semicontinuous; 
y(t) outside some interval [c,d]; and 
there were real numbers a,b:c ≤ a ≤ b ≤ d for which y(t) 
was monotonic increasing on [c,a], y(t) is monotonic 
decreasing on [b,d] and y(t) = 1, a , t ≤ b. 
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 An equivalent parametric definition was also given as 
follows:

Definition 2.2.  A fuzzy number y in parametric form is a 
pair y =  which satisfies the following 
requirements:

 is a bounded left continuous monotonic increasing 
function over [0,1]; 

 is a bounded left continuous monotonic decreasing 
function over [0,1]; and 

 The definitions of trapezoidal fuzzy number and 
triangular fuzzy number were given by Khan et al. (2014) 
as follows:

Definition 2.3. Trapezoidal fuzzy number Let  A = (a,b,c,d), 
a < b < c < d be a fuzzy set on R = (–∞, ∞), it was called a 
trapezoidal fuzzy number if its membership function was

  (1)

Definition 2.4. Let B = (a,b,c), a < b < c  be a fuzzy set on 
R = (–∞, ∞), it was called a triangular fuzzy number if its 
membership function was

  (2)

 We recall the definition of generalized differentiability 
which was introduced by Bede et al. (2007).

Definition 2.5.  Let F:(a,b) →F and t0∈ (a,b). We say 
that F was generalized differentiable at t0, if there exists 
an element Fʹ(t0) ∈F, such that

Case 1: for all h>0 sufficiently small, ,   
  and the limits

 

or

Case 2: for all h>0 sufficiently small,  

 and the limits

 

 Case 1 corresponds to the Hukuhara derivatives which 
was introduced by Puri and Ralescu (1983). A function 
that was generalized differentiable as in Cases 1 and 2 will 
be referred as (1)-differentiable or as (2)-differentiable, 
respectively. Then we have the following theorem.

Theorem 2.1.  Let  F:(a,b) →F where t0∈(a,b)  and F was 
a fuzzy function and denote [Fʹ(t,r)] = [f (t,r), g(t,r)] for 
each r ∈ [0,1]. Then two cases were considered.

Case 1: If Y was differentiable in the first form (Case 1), 
then  f (t, r) and g(t, r) were differentiable functions in the 
following form:

 [Fʹ(t,r)] = [f ʹ(t,r), gʹ(t,r)].

Case 2: If Y was differentiable in the second form (Case 
2), then f (t,r) and g(t,r) were differentiable functions in 
the following form:

 [Fʹ(t,r)] = [gʹ(t,r), f ʹ(t,r)].

FUZZY DIFFERENTIAL EQUATIONS

We consider the following fuzzy initial value problem 
(FIVP)

 yʹ(t) = F(t,y(t), y(t0) = y0, t ∈ [t0, T]. (3)

where F:[t0,T] × F →F was a fuzzy-valued function 
defined on [t0,T] with T > 0 and Y0 ∈ F. The solution 
of (3) was dependent of the choice of derivative based 
on Theorem 2.1. Let y(t,r) = [ (t,r), (t,r)] and F(t,y(t,r)) 
= [F(t, (t,r), (t,r), G(t, (t,r), (t,r))].  If y(t,r) was 
(1)-differentiable then yʹ(t,r) = [ ʹ(t,r), ʹ(t,r)]. We have

  (4)

 If y(t,r) was (2)-differentiable then yʹ(t,r) = [ ʹ(t,r), 
ʹ(t,r)].  We have

  (5)

Definition 3.1. Let the solution of (3) be y(t,r) and its r-cut 
be y(t,r) = [ (t,r), (t,r)]. If  (t,r) ≤ (t,r) where r ∈ [0,1] 
then y(t,r) was called strong solution otherwise  y(t,r) was 
called weak solution. Refer to Mondal and Roy (2013).
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BLOCK BACKWARD DIFFERENTIATION FORMULAS UNDER 
GENERALIZED DIFFERENTIABILITY

In this section, we review the formulation of fully implicit 
two point block backward differentiation formulas 
(FI2BBDF) in Ibrahim et al. (2011, 2008, 2007, 2003). Then 
the diagonally implicit block backward differentiation 
formulas (DI2BBDF) was derived based on the strategy 
in Zawawi et al. (2012). Both methods were extended 
in fuzzy version under the interpretation of generalized 
differentiability concept.

FULLY IMPLICIT

The FI2BBDF was derived using (tn–1, yn–1), (tn, yn), (tn+1, yn+1)  
and (tn+2, yn+2) as interpolating points. The approximated 
values, yn+1 and yn+2 were computed simultaneously in each 
block using two backvalues, tn and tn–1. Ibrahim et al. (2007) 
have shown the details of derivation using generating 
function technique. The following equations represent the 
formula of FI2BBDF.

  (6)

 To set the formula (6) in fuzzy version, let  
 

be the exact solution and   be the approximated 
solution of (3). We consider

 

  (7)

 Throughout this argument, the value of r was fixed for 
r ∈ (0,1]. Then the exact and approximated solution at tn 
were, respectively, denoted by

 

  (8) 
 

 The grid points at which the solution was calculated 
were

 
If FI2BBDF is (1)-differentiable, we have

 

(9)

and

  (10)

where F(tn+1, r) =  (tn+1, (tn+1, r),  (tn+1, r)), G(tn+1, r) = 
(tn+1, )(tn+1, r),  (tn+1, r)),  F(tn+2, r) =  (tn+2, (tn+2, r), 

 (tn+2, r)), and G(tn+2, r) = (tn+2, )(tn+2, r),  (tn+2, r)). 

If FI2BBDF is (2)-differentiable, we have

 

 (11)

and

 

(12)

where

  and

 

DIAGONALLY IMPLICIT

The first point of DI2BBDF was derived using (tn–2, 
yn–2), (tn–1, yn–1), (tn, yn) and (tn+1, yn+1) which has one 
interpolating point less than the first point of FI2BBDF. 
For a fair comparison, the diagonally implicit formula 
must has one backvalue more than the fully implicit 
formula to ensure that both methods have the same order. 
Hence, the approximated values, yn+1 and yn+2 of DI2BBDF 
were computed simultaneously in each block using three 
backvalues, tn–2, tn–1 and tn. The method can be derived 
using Lagrange polynomial which was defined as follows:

  (13)
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where

 

for each j = 0, 1,…, k. 

From (17), we produce

 

  

 (14)

Let t = sh + 1n+1, we obtain 

 
 (15)

 Equation (19) is differentiated once with respect to s 
at the point t = tn+1. By evaluating s = 0, the first point,  yn+1 
of DI2BBDF was obtained as follows:

  (16)

 The similar procedure was used to obtain the second 
point, yn+2 of DI2BBDF using (tn–2, yn–2), (tn–1, yn–1)(tn, yn), 
(tn+1, yn+1)  and (tn+2, yn+2) as the interpolating points. We 
obtain

 

 (17)

If DI2BBDF was (1)-differentiable, we have

 

  
(18)

and

 

 

 

 (19)

where

  and

  

If DI2BBDF was (2)-differentiable, we have

  (20)

and
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 (21)

where

  and

 

NUMERICAL EXPERIMENTS

In this section, two fuzzy initial value problems (FIVPs) 
were provided to test the effectiveness of FI2BBDF and 
DI2BBDF. All computations were carried out using C 
programming with step size 0.01 and the exact solutions of 
each test problems were determined using Maple software.
Problem 1: Consider the FIVP (Balooch Shahryari & 
Salahshour 2012)

  (22)

 Let λ = 1 and I = [0,0.1]. Based on (4), (22) can be 
translated into a system of ODEs as follows:

 

where the (1)-differentiable solution at t = 0.1 is given by

 

 Using the form of (5), we have the following system 
of ODEs:

 

where

  

was (2)-differentiable solution

Problem 2: Consider bank account problem (Mondal & 
Roy 2013)

 

 (23)

 The balance, y(t) of a bank account grows under 
continuous process given by yʹ(t) where c was the annual 
interest rate (c = 4%) and y(0, r) was the initial balance. 
Hence, (23) can be translated into a system of ODEs as 
follows:

 

where the (1)-differentiable solution at t = 0.1 was given by

 

 Using the form of (5), we have the following system 
of ODEs:

 

where

 

was (2)-differentiable solution. 

 The numerical solutions of Problems 1 and 2 were 
shown in Tables 1 - 4 and Tables 5 – 8, respectively. 
In addition, the comparison of exact solutions and 
approximated solutions between FI2BBDF and DI2BBDF was 
illustrated in Figures 1 - 4. The notation and abbreviation 
used in the tables and figures take the following meaning:

 r :  Fuzzy numbers with bounded r-cut intervals

  :  Lower bounded approximated solution for Case 1

  : Upper bounded approximated solution for Case 1

  :  Lower bounded exact solution for Case 1

  :  Upper bounded exact solution for Case 1

  :  Lower bounded approximated solution for Case 2

  : Upper bounded approximated solution for Case 2

  :  Lower bounded exact solution for Case 2

  : Upper bounded exact solution for Case 2

Error :   or  
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TABLE  2.  Numerical results of FI2BBDF for Problem 1 (Case 2)

r Error Error

0.0 -9.133647E-1 -9.139312E-1 5.664630E-4 9.133647E-1 9.139312E-1 5.664630E-4
0.1 -8.220283E-1 -8.225381E-1 5.098167E-4 8.220283E-1 8.225381E-1 5.098167E-4
0.2 -7.306918E-1 -7.311449E-1 4.531704E-4 7.306918E-1 7.311449E-1 4.531704E-4
0.3 -6.393553E-1 -6.397518E-1 3.965241E-4 6.393553E-1 6.397518E-1 3.965241E-4
0.4 -5.480188E-1 -5.483587E-1 3.398778E-4 5.480188E-1 5.483587E-1 3.398778E-4
0.5 -4.566824E-1 -4.569656E-1 2.832315E-4 4.566824E-1 4.569656E-1 2.832315E-4
0.6 -3.656366E-1 -3.655725E-1 2.265852E-4 3.653459E-1 3.655725E-1 2.265852E-4
0.7 -2.740094E-1 -2.741794E-1 1.699389E-4 2.740094E-1 2.741794E-1 1.699389E-4
0.8 -1.826729E-1 -1.827862E-1 1.132926E-4 1.826729E-1 1.827862E-1 1.132926E-4
0.9 -9.133647E-2 -9.139312E-2 5.664630E-5 9.133647E-2 9.139312E-2 5.664630E-5
1.0 0 0 0 0 0 0

 

TABLE 1.  Numerical results of FI2BBDF for Problem 1 (Case 1)

r Y1 Error Error

0.0 -1.093521 -1.094174 6.536184E-4 1.093521 1.094174 6.536184E-4
0.1 -9.841686E-1 -9.847569E-1 5.882565E-4 9.841686E-1 9.847569E-1 5.882565E-4
0.2 -8.748165E-1 -8.753394E-1 5.228947E-4 8.748165E-1 8.753394E-1 5.228947E-4
0.3 -7.654645E-1 -7.659220E-1 4.575329E-4 7.654645E-1 7.659220E-1 4.575329E-4
0.4 -6.561124E-1 -6.565046E-1 3.921710E-4 6.561124E-1 6.565046E-1 3.921710E-4
0.5 -5.467603E-1 -5.470871E-1 3.268092E-4 5.467603E-1 5.470871E-1 3.268092E-4
0.6 -4.374083E-1 -4.376697E-1 2.614473E-4 4.374083E-1 4.376697E-1 2.614473E-4
0.7 -3.280562E-1 -3.282523E-1 1.960855E-4 3.280562E-1 3.282523E-1 1.960855E-4
0.8 -2.187041E-1 -2.188349E-1 1.307237E-4 2.187041E-1 2.188349E-1 1.307237E-4
0.9 -1.093521E-1 -1.094174E-1 6.536184E-5 1.093521E-1 1.094174E-1 6.536184E-5
1.0 0 0 0 0 0 0

  

TABLE  3. Numerical results of DI2BBDF for Problem 1 (Case 1)

r Y1 Error Error

0.0 -1.094353 -1.094174 1.784107E-4 1.094353 1.094174 1.784107E-4
0.1 -9.849174E-1 -9.847569E-1 1.605696E-4 9.849174E-1 9.847569E-1 1.605696E-4
0.2 -8.754822E-1 -8.753394E-1 1.427285E-4 8.754822E-1 8.753394E-1 1.427285E-4
0.3 -7.660469E-1 -7.659220E-1 1.248875E-4 7.660469E-1 7.659220E-1 1.248875E-4
0.4 -6.566116E-1 -6.565046E-1 1.070464E-4 6.566116E-1 6.565046E-1 1.070464E-4
0.5 -5.471763E-1 -5.470871E-1 8.920534E-5 5.471763E-1 5.470871E-1 8.920534E-5
0.6 -4.377411E-1 -4.376697E-1 7.136427E-5 4.377411E-1 4.376697E-1 7.136427E-5
0.7 -3.283058E-1 -3.282523E-1 5.352320E-5 3.283058E-1 3.282523E-1 5.352320E-5
0.8 -2.188705E-1 -2.188349E-1 3.568213E-5 2.188705E-1 2.188349E-1 3.568213E-5
0.9 -1.094353E-1 -1.094174E-1 1.784107E-5 1.094353E-1 1.094174E-1 1.784107E-5
1.0 0 0 0 0 0 0
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TABLE  4.  Numerical results of DI2BBDF for Problem 1 (Case 2)

r Error Error

0.0 -9.140915E-1 -9.139312E-1 1.603542E-4 9.140915E-1 9.139312E-1 1.603542E-4
0.1 -8.226824E-1 -8.225381E-1 1.443188E-4 8.226824E-1 8.225381E-1 1.443188E-4
0.2 -7.312732E-1 -7.311449E-1 1.282834E-4 7.312732E-1 7.311449E-1 1.282834E-4
0.3 -6.398641E-1 -6.397518E-1 1.122480E-4 6.398641E-1 6.397518E-1 1.122480E-4
0.4 -5.484549E-1 -5.483587E-1 9.621254E-5 5.484549E-1 5.483587E-1 9.621254E-5
0.5 -4.570458E-1 -4.569656E-1 8.017712E-5 4.570458E-1 4.569656E-1 8.017712E-5
0.6 -3.656366E-1 -3.655725E-1 6.414169E-5 3.656366E-1 3.655725E-1 6.414169E-5
0.7 -2.742275E-1 -2.741794E-1 4.810627E-5 2.742275E-1 2.741794E-1 4.810627E-5
0.8 -1.828183E-1 -1.827862E-1 3.207085E-5 1.828183E-1 1.827862E-1 3.207085E-5
0.9 -9.140915E-2 -9.139312E-2 1.603542E-5 9.140915E-2 9.139312E-2 1.603542E-5
1.0 0 0 0 0 0 0

TABLE  5.  Numerical results of FI2BBDF for Problem 2 (Case 1)

r Y1 Error Error

0.0 9.539652E2 9.539662E2 9.278306E-4 1.103426E3 1.103427E3 1.073428E-3
0.1 9.601703E2 9.601712E2 9.338798E-4 1.090948E3 1.090950E3 1.061278E-3
0.2 9.663753E2 9.663762E2 9.399289E-4 1.078471E3 1.078472E3 1.049127E-3
0.3 9.725803E2 9.725813E2 9.459781E-4 1.065993E3 1.065994E3 1.036977E-3
0.4 9.787854E2 9.787863E2 9.520272E-4 1.053516E3 1.053517E3 1.024826E-3
0.5 9.849904E2 9.849914E2 9.580764E-4 1.041038E3 1.041039E3 1.012675E-3
0.6 9.911954E2 9.911964E2 9.641255E-4 1.028561E3 1.028562E3 1.000525E-3
0.7 9.974005E2 9.974014E2 9.701747E-4 1.016083E3 1.016084E3 9.883744E-4
0.8 1.003606E3 1.003606E3 9.762238E-4 1.003606E3 1.003606E3 9.762238E-4
0.9 1.009811E3 1.009812E3 9.822730E-4 9.911279E2 9.911289E2 9.640733E-4
1.0 1.016016E3 1.016017E3 9.883221E-4 9.786504E2 9.786513E2 9.519227E-4

TABLE  6.  Numerical results of FI2BBDF for Problem 2 (Case 2)

r Error Error

0.0 9.534252E2 9.534262E2 9.274126E-4 1.103966E3 1.103967E3 1.073846E-3
0.1 9.596978E2 9.596987E2 9.335140E-4 1.091421E3 1.091422E3 1.061643E-3
0.2 9.659703E2 9.659712E2 9.396154E-4 1.078876E3 1.078877E3 1.049441E-3
0.3 9.722428E2 9.722438E2 9.457168E-4 1.066331E3 1.066332E3 1.037238E-3
0.4 9.785154E2 9.785163E2 9.518182E-4 1.053786E3 1.053787E3 1.025035E-3
0.5 9.847879E2 9.847889E2 9.579196E-4 1.041241E3 1.041242E3 1.012832E-3
0.6 9.910604E2 9.910614E2 9.640210E-4 1.028696E3 1.028697E3 1.000629E-3
0.7 9.973330E2 9.973339E2 9.701224E-4 1.016151E3 1.016152E3 9.884266E-4
0.8 1.003606E3 1.003606E3 9.762238E-4 1.003606E3 1.003606E3 9.762238E-4
0.9 1.009878E3 1.009879E3 9.823252E-4 9.910604E2 9.910614E2 9.640210E-4
1.0 1.016151E3 1.016152E3 9.884266E-4 9.785154E2 9.785163E2 9.518182E-4
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TABLE  8.  Numerical results of DI2BBDF for Problem 2 (Case 2)

r Error Error

0.0 9.534259E2 9.534262E2 2.579988E-4 1.103967E3 1.103967E3 2.987354E-4
0.1 9.596984E2 9.596987E2 2.596961E-4 1.091422E3 1.091422E3 2.953407E-4
0.2 9.659710E2 9.659712E2 2.613935E-4 1.078877E3 1.078877E3 2.919460E-4
0.3 9.722435E2 9.722438E2 2.630909E-4 1.066332E3 1.066332E3 2.885513E-4
0.4 9.785161E2 9.785163E2 2.647882E-4 1.053787E3 1.053787E3 2.851566E-4
0.5 9.847886E2 9.847889E2 2.664856E-4 1.041241E3 1.041242E3 2.817618E-4
0.6 9.910611E2 9.910614E2 2.681830E-4 1.028696E3 1.028697E3 2.783671E-4
0.7 9.973337E2 9.973339E2 2.698803E-4 1.016151E3 1.016152E3 2.749724E-4
0.8 1.003606E3 1.003606E3 2.715777E-4 1.003606E3 1.003606E3 2.715777E-4
0.9 1.009879E3 1.009879E3 2.732750E-4 9.910611E2 9.910614E2 2.681830E-4
1.0 1.016151E3 1.016152E3 2.749724E-4 9.785161E2 9.785163E2 2.647882E-4

TABLE  7.  Numerical results of DI2BBDF for Problem 2 (Case 1)

r Y1 Error Error

0.0 9.539659E2 9.539662E2 2.581345E-4 1.103427E3 1.103427E3 2.985997E-4
0.1 9.601709E2 9.601712E2 2.598149E-4 1.090949E3 1.090950E3 2.952220E-4
0.2 9.663760E2 9.663762E2 2.614953E-4 1.078472E3 1.078472E3 2.918442E-4
0.3 9.725810E2 9.725813E2 2.631757E-4 1.065994E3 1.065994E3 2.884664E-4
0.4 9.787861E2 9.787863E2 2.648561E-4 1.053517E3 1.053517E3 2.850887E-4
0.5 9.849911E2 9.849914E2 2.665365E-4 1.041039E3 1.041039E3 2.817109E-4
0.6 9.911961E2 9.911964E2 2.682169E-4 1.028561E3 1.028562E3 2.783332E-4
0.7 9.974012E2 9.974014E2 2.698973E-4 1.016084E3 1.016084E3 2.749554E-4
0.8 1.003606E3 1.003606E3 2.715777E-4 1.003606E3 1.003606E3 2.715777E-4
0.9 1.009811E3 1.009812E3 2.732581E-4 9.911286E2 9.911289E2 2.681999E-4
1.0 1.016016E3 1.016017E3 2.749385E-4 9.786511E2 9.786513E2 2.648222E-4

FIGURE 1.  Graph of exact and approximated solutions of 
FI2BBDF and DI2BBDF for Problem 1 (Case 1)

FIGURE  2.  Graph of exact and approximated solutions of 
FI2BBDF and DI2BBDF for Problem 1 (Case 2)
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that both methods were suitable for solving FDEs. Future 
work is in progress on extending the DI2BBDF method for 
solving higher order FDEs.
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DISCUSSION

From all tabulated results, it was apparent that the 
approximated solutions of both methods tend to the exact 
solutions. The approximated solutions showed that  
was an increasing function and  was a decreasing 
function for r ∈ [0,1]. This was expected due to Definition 
2.2. However, it should be noted that in Problem 1, 
the solution obtained for r = 1.0 was   
whereas in Problem 2, the solution obtained for r = 1.0 was 

. This satisfies the Definition 3.1 where 
Problem 1 possesses strong solutions for r = [0,1] while 
Problem 2 possesses strong solutions for r = [0,0.8]  and 
weak solutions for r ∈ [0.9,1].
 Next, we were interested to discuss and compare the 
numerical results obtained by FI2BBDF and DI2BBDF in 
term of accuracy. Note that Tables 1 - 2 and Tables 5 - 6 
show the exact and approximated solutions of FI2BBDF for 
solving Problems 1 and 2, respectively. Tables 3 - 4 and 
Tables 7 - 8 show the exact and approximated solutions 
of DI2BBDF for solving Problems 1 and 2, respectively. 
From Tables 1 - 8, it was obvious that the DI2BBDF was 
more accurate than FI2BBDF for both tested problems. This 
may due to the derivation of diagonally implicit method 
which involves less interpolating point. Furthermore, the 
accuracy of DI2BBDF for Case 2 (Table 4) was better than 
Case 1 (Table 3) when  r ∈ [0.4,1]. However, the pattern 
of accuracy for Case 1 (Table 7) was almost similar to 
that in Case 2 (Table 8). This indicates the importance of 
generalized differentiability concept for numerical solution 
of fuzzy problems.

CONCLUSION

In this paper we present the numerical solution of FDEs using 
FI2BBDF and DI2BBDF under generalized differentiability 
concept. We have shown that the solution of FDEs was 
not unique since it has two types of differentiability to be 
considered. Therefore we can choose the solution which 
better reflects the behavior of any real system. From 
the numerical results, the DI2BBDF performs better than 
FI2BBDF in term of accuracy. Overall it can be concluded 

FIGURE  3.  Graph of exact and approximated solutions of 
FI2BBDF and DI2BBDF for Problem 2 (Case 1)
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FIGURE  4.  Graph of exact and approximated solutions of 
FI2BBDF and DI2BBDF for Problem 2 (Case 2)
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